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Abstract. In this paper we propose a topic popularity prediction model
to quantifiy popularity more accurately with senmantic information and
incorporates sentiment ino popularity prediction.

Keywords: Topic popularity prediction - Sentiment analysis -
Popularity quantification + Social media

1 Introduction

Most existing topic popularity prediction models measure popularity simply
using forwarding or view count, ignore semantic relation between posts and
topic, which may lead to inccuracy. Therefore, we propose a model to quantify
popularity more accurately with posts’ semantic information and incorporate
sentiment into popularity prediction.

2 Model Construction

For the input of a series of posts about a certain topic, we aim to output the
predicted popularity.

We first quantify the topic popularity using posts’ forwarding number
weighted by words’ relevance W R to the topic. We use the idea of PageRank
[1] to calculate word w’s relevance to the topic WR(w) in post d, defined in
Eqn. (1):

_ p(wi,wy)

p(we,wy) - WR(w;), (1)

WR(w;) = +0-) Z

]*)’L

where |d| is the length of the post that contains w;, p(w;, w;) is distance between
word w; and wj, which is a linear combination of their semantic distance calcu-
lated by Word2Vec and lexical distance.

We then use MPQA subjective lexicon [3] to evaluate sentiment intensity
of the subjective words and tag 64 most popular emojis with their sentiment
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intensity. With the sentiment intensity of subjective words and emojis, we cre-
ate dataset to train the hybrid architecture [2] of Bi-LSTM and convolutional
network to calculate sentiment intensity of a certain post. After getting pop-
ularity and sentiment time series, we use convolutional network to learn their
dependence and learn the history influence information of each time period and
use Autoregressive model to predict future popularity.

3 Experiments

We test our model on the Twitter data from Dec. 23, 2017 to Mar. 19, 2018
on different topics. Here we use result of topic Gun Control and Trump as an
example to illustrate performance of our model. We evaluate the accuracy of
each prediction using Mean Square Error (MSE), the result is shown in Fig. 1
and Tab. 1.
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Fig. 1. Prediction performance of each model on each topic, the horizontal ordinate
represents two topics, the vertical ordinate represents MSE. The “S” prefix means
combining with sentiment intensity

Table 1. Improvement of prediction for each network when combining sentiment
S-CNN/CNN S-LR/LR S-DHCC-AR/DHCC-AR
21.39% 29.10%  38.71%

4 Conclusions

In this paper we propose a topic popularity prediction model, SATP. This model
quantifies popularity using semantic information, making the quantification more
accurate and explainable. We use the idea of Autoregressive for popularity pre-
diction. To incorporate sentiment into prediction, we use CNN to learn sentiment
and popularity’s data dependence and history influence. We evaluate SATP on
Twitter dataset by comparing mean square error (MSE).
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