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Abstract. Bayesian networks are graphical models that are capable
of encoding complex statistical and causal dependencies, thereby facili-
tating powerful probabilistic inferences. To apply these models to real-
world problems, it is first necessary to determine the Bayesian network
structure, which represents the dependencies. Classic methods for this
problem typically employ score-based search techniques, which are often
heuristic in nature and have limited running times and performances that
do not scale well for larger problems. In this paper, we propose a novel
technique called RBNets, which uses deep reinforcement learning along
with an exploration strategy guided by Upper Confidence Bound for
learning Bayesian Network structures. RBNets solves the highest-value
path problem and progressively finds better solutions. We demonstrate
the efficiency and effectiveness of our approach against several state-
of-the-art methods in extensive experiments using both real-world and
synthetic datasets.

Keywords: Bayesian network - Structure learning - Reinforcement
learning

1 Introduction

A Bayesian network is a probabilistic graphical model that represents prob-
abilistic dependencies between random variables in a domain compactly and
intuitively. It has a wide range of applications in data mining, classification prob-
lems, medical diagnosis and engineering decisions, etc. Learning the structure of
Bayesian networks involves finding the acyclic graph that fits a discrete dataset
best over the random variables. It is the basis for solving practical problems, but
is a very challenging task in machine learning.
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In this work, we consider the problem of learning an appropriate Bayesian
network structure for a given dataset and scoring function. Such score-based
learning has been shown to be NP-hard [6], so much early research focused
on local search strategies, searching for a structure that optimizes a particular
scoring function, such as greedy hill climbing approaches [9,10,12], ordering-
based search [14,19,25], and ant colony optimization [4]. They all take as input
scores of candidate parent sets of all variables, and use various optimization
techniques to find a structure that is a good predictor of the data. Unfortunately,
these algorithms are unable to guarantee the quality of the learned networks.
Thus, it motivates the research of more principled search algorithms.

Over the past several decades, exact algorithms have been studied exten-
sively and there have been proposals based on A* search [5,28], dynamic pro-
gramming [21,23], branch and bound [3,16], model averaging [15], and integer
linear programming [7,8,13]. Besides, some reinforcement learning based meth-
ods are proposed, such as RL-BIC [29] and CORL [26]. These methods achieve
good performance on smaller networks but fail in domains with a large number
of variables unless the cardinality of parent sets is severely restricted.

In this paper, we view the problem of learning a Bayesian network structure
via the optimization of a scoring function as a path-finding problem in an order
graph [28]. A straightforward approach to solve this path-finding problem is to
resort to A* [28]. However, because the number of nodes in this order graph is
exponential in the number of variables, even A* struggles to solve this problem
as the number of variables increases. The goal of this paper is to propose a
novel method based on reinforcement learning (RL) to improve the learning
performance.

RL is a machine learning method [24] concerned with how agents ought to
take actions in an environment so as to maximize some notion of expected cumu-
lative reward. Recently, it has been shown [17,22] that it can scale to decision-
making problems that were previously intractable, such as high-dimensional state
and action spaces. It is therefore natural to use RL to tackle this path-finding
problem. To demonstrate this idea, we apply Deep Q-network (DQN) to find a
highest-value path in the order graph, which achieves good performance in many
fields. The proposed approach RBNets amounts to doing a stochastic search
guided by the costs of the edges of the graph while A* searches for a short-
est path guided by a heuristic function. Upper Confidence Bound (UCB) based
strategy is utilized for better exploration rather than simple e-greedy strategy.

The contributions of this paper are as follows: (1) we propose a novel method
RBNets based on deep reinforcement learning for Bayesian network structure
learning; (2) we integrate it with a UCB-based exploration strategy to tackle
the dilemma of exploration and exploitation; (3) we thoroughly validate our
propositions on diverse sets of experiments using several real-world and synthetic
datasets, which shows the efficiency and effectiveness of our proposition.
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2 Preliminaries

In this section, we first review the problem of Bayesian Network Structure Learn-
ing (BNSL). Then we introduce the local score and pruning rules for calculating
the candidate parent sets. We formulate the BNSL as a shortest-path prob-
lem [28] using order graph. It is the basis of our proposed method.

2.1 Bayesian Network Structure Learning

A Bayesian network is a directed acyclic graph (DAG) defined as G = (V, €),
where V = {X;,Xs,...,X,} is a set of random variables and &€ C V x V
is a collection of arcs. A directed arc from X; to X, denotes a probabilistic
dependence between the two variables, which also means X; is a parent of
X;. The parent set of X; is denoted by II;. Numerically, a conditional prob-
ability distribution P(X; | II;) describes the dependence between X; and the
variables in I1;. The joint probability over all variables factorizes as the prod-
uct of all the conditional probability distributions in the Bayesian network,
P(X1, X2, ... X)) =i, P(X; | IT;).

Given a dataset D = {D;,Ds,..., Dy}, where D; is a set of values over
variables in V. The goal of structure learning is to find a DAG G that optimizes a
given scoring function, which measures the goodness of fit of a network structure
to D. In this work, as customary, we assume that each variable is discrete with
a finite number of possible values, and no data point has missing values in D.
Thus we can define the BNSL as follows.

Definition 1 (BNSL). The optimal Bayesian network structure
G* = 5(G,D 1
arg max 3(G, D), (1)

where G is the set of all possible DAGs and § is the scoring function.

To make the problem tractable, the standard approach is to use a scor-
ing function that is decomposable over the Bayesian network’s structure, i.e.,
the score of a network can be decomposed into a sum of node scores §(G) =
> 8;(I1;) [12]. The values of 8;(II;) are often called local scores.

2.2 Local Scores

Many decomposable scoring functions can be used to measure the quality of a
network structure, such as the K2, BDeu, BDe, MDL or BIC scores [15]. For con-
creteness, we present our work with the Bayesian Information Criterion (BIC),
i.e., §; = BIC. However, our method could be extended to other decomposable
scoring functions. BIC is defined as follows.

BIC(G) =Y BIC(X;,II;)  where
=1

BIC(X, ) = 3" > (maxloghuir) — 10g2m(|X| —1) |,
well xeX
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where m € IT (resp. € X) denotes an assignment of all variables in IT (resp.

of variable X), ém is the maximum likelihood estimate of the conditional prob-
ability P(X = z | Il = 7), my , denotes the number of data points consistent
with (X =2 A II =), and |II| (resp. | X|) represents the number of possible
instantiations of variables in IT (resp. of variable X) with the convention that
|o| =1.

Given n variables, there are 2"~! possible parent sets for each variable. Thus,
the size of the solution space grows exponentially in the number of variables. It is
therefore impractical to calculate local scores for all parent sets. The computation
of this process can be sped up by adopting exact pruning approaches, which
guarantees not to remove the optimal network from consideration. There are also
other pruning strategies, e.g., restricting the cardinality of parent sets. However,
they could eliminate parent sets that are in a globally optimal network. We utilize
the following theorems that hold in particular for the BIC scoring function. The
first theorem [3] is useful and can handle the issue of having to compute scores
for all possible parent sets.

Theorem 1. The optimal graph G has at most O(logm) parents per node.

Therefore, there is no need to compute scores for any parent set with a size larger
than O(logm), because these parent sets are guaranteed to be suboptimal.

This second theorem [3] provides a bound to discard parent sets without even
inspecting them.

Theorem 2. Let X; be a variable with II; C II] two possible parent sets such
that t;(II])+5;(I1;) > 0, where t;(I1}) = |II}| (| X:|—1). Then II] and all supersets
II!" > II! are not optimal parent set of X;.

The entropy of a parent set is also a useful measure for pruning. [2] gave a
pruning rule that provides an upper bound on conditional entropy of candidate
parent sets and their subsets. The entropy for a variable X; and parent set II;
are defined as follows, respectively.

| X
Mk Mk
H(Xi):_z m logﬁ (2)
k=1
|11, | mi; mi;
H(Hi):—ZWIOg?7 (3)
j=1

where my, and m;; represent, respectively, the number of times (X; = x;;) and
(II; = m;;) appear in the dataset. The conditional information is defined as
usual,

HX|Y)=HXUY)-H(Y). (4)

Theorem 3. Let X; be a variable, and II; be a parent set for X;. Let X; ¢ II;
such that m-min{ H(X, | II;), H(X; | II;)} > (1 —|X,|) - t;(II;). Then the parent
set IT] = II; U{X;} and all its supersets can be safely ignored when building the
list of parent sets for X;.
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It can be used for pruning the search space of parent sets without having to
compute their BIC scores.

After pruning, the remaining parent sets are defined as potentially optimal
parent sets (POPS). We denote the set of POPS as P; for variable X;. Given
POPS as the input, the BNSL problem can be converted into the following form.

G* = $i(Xi, 11;), 5
argrggg;S( ) (5)

where II; is the parent set of X; in G and II; € P;. In practice, POPS are of
course not computed, but the two previous theorems are used to stop the search
for known suboptimal subsets.

2.3 Order Graph
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Fig. 1. RBNets framework. We have three components in our method. (a) Order graph
is the environment of the agent, from which it can extract states and return rewards.
This figure is an example order graph with three variables. (b) We use random walk
to learn latent representations of states in the order graph. The agent explores order
graph based on UCB search strategy and takes action in the environment. Finally it
finds the ordering of variables. (¢) From the ordering and POPS, we can calculate the
parent sets and rebuild the Bayesian network structure.

Learning the structure of a Bayesian network can be seen as a search in a state-
space graph (see Fig.1(a) for an example with three variables). For a problem
with n variables, this graph contains 2" nodes. Each node represents a subset of
variables. For ease of presentation, we identify nodes and subsets. They can be
organized into n + 1 layers. The top node corresponding to the empty set is the
start node at layer 0, while the bottom node, which includes all variables, is the
goal node at layer n. For any subset U and any variable X; ¢ U, an arc connects
U to U U{X;}. In our context, an arc corresponds to adding a new variable X;
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to a subnetwork whose variables are in U. The value of an arc is defined as

cost(U — U U{X;}) = BestCost(U, X;)

= mcuier, 5:(Xs, IT), ©)
where BestCost(U, X;) is the score of an optimal parent set for X; in predeces-
sor set U with the POPS constraint. For example, the edge from {X;, X5} to
{X1, X5, X3} has a cost equal to BestCost({X1, X3}, Xs), which is the score of
the parent set of X5 optimal in {X;, X3}.

With this definition of search graph, each path from the start node
to the goal node represents an order of the variables; that is, each node
can only find their parents in its predecessor. For example, the path
@, { X2}, {X1, Xo}, {X1, X2, X3} denotes the variable ordering Xs, X7, X3, so
this graph is called order graph. The value of a path is equal to the sum of
the value of all the edges over the path. The longest path is then the path with
the maximum total value in the order graph.

From a longest path from the start node to the goal node, we can reconstruct
a Bayesian network structure by noting that each edge on the path encodes the
choice of good parents for one of the variables out of the preceding variables.
Therefore, we can generate a valid Bayesian network by putting together all the
good parent choices.

3 Deep Reinforcement Learning-Based Bayesian Network
Structure Learning

In this section, we present our proposed approach for solving BNSL problem.
First, we formulate the BNSL problem by Reinforcement learning. Then we
introduce Upper-Confidence Bound based exploration strategy for the agent.
Finally, we present Deep Q-learning algorithm for our method. The framework
is depicted in Fig. 1.

3.1 Reinforcement Learning Formulation

We propose to solve the previously-described highest-value path problem with a
reinforcement learning (RL) approach. In RL, an agent interacts with its envi-
ronment in order to learn a policy (i.e., which determines how to select actions
in each state) in order to maximize an expected sum of rewards. As shown in
Fig. 1(a), we use the order graph as the environment of the RL agent. Formally,
the problem is defined as an episodic RL problem with a deterministic transition
function, i.e.,

(a) state. Each node represents a state s of the agent. The initial state cor-
responds to the start node and the final state is the goal node.
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(b) action. In time step t, the agent arrives at a state s; from s;_; and then
selects an action a; from a discrete action set A; according to a policy m. In
our formulation, A; is the set of the neighbor states of s;. Since each state has
a varying number of actions, |A;| is set to the maximum number of actions of
states. The illegal actions (i.e., there exists no corresponding arc in the order
graph) are not considered.

(¢) transition function. Following an action a; in state s;, a transition to
s¢+1 occurs with probability one if there exists an arc between the corresponding
nodes in the order graph.

(d) reward. We use the value of each arc as the reward signal r; at each time
step t, that is, if the agent arrives at s; from U to U U {X;}, the reward is

T = e, ST @
The RL agent interacts with the environment as follows: The agent starts in
the initial state (i.e., start state). The agent repeatedly chooses an action in its
current state, observes a reward and moves to a new state (i.e., adjacent node in
the order graph). When the agent reaches the goal node, it returns automatically
to the initial state.

Q-learning [24] is a standard algorithm for solving an RL problem. While
interacting with the environment, it consists in learning the value Q(s,a) of
actions a in states s. It is updated as follows after an action a is performed in
state s, observing reward r and moving to s’:

Qls, @) — Q(s,a) + ol + y max Qs',a') ~ Qs, ),

where « is the learning rate (0 < a < 1) determining to what extent newly
acquired information overrides old information and 7 € [0, 1] is a discount factor
determining the importance of future rewards. In our episodic problem, ~ is set
to one so that sum of rewards corresponds to the value of a path.

When Q-learning is used to solve a path problem, Q(s, a) has a simple inter-
pretation: it is the estimated score of the best path found so far from s to the
final state starting from the arc corresponding to a. When learning stops, the
best found path can be recovered by choosing the actions that maximizes Q(s, a)
starting from the initial state. Using Q-learning makes the algorithm progres-
sively find better and better solution. However, its efficiency depends on the
exploration strategy used in the algorithm, which decides which action to try
during learning.

3.2 Upper Confidence Bounds Based Strategy

The exploration strategy makes a trade-off between exploration (i.e., try actions
that are currently considered sub-optimal but that may reveal to be good later
on) and exploitation (i.e., select the best action found so far, which may in fact
not be optimal).
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Classically, Q-learning is run with an e-greedy action selection: in current
state s, select arg max, Q(s, a) with probability 1—e or choose a uniform random
action otherwise. Running Q-learning amounts then to perform a local random
search in each encountered state in order to find the best subpath to the final
state. Although such strategy guarantees the convergence to an optimal solution
(under some technical conditions) [24], it is clearly inefficient as actions will
continue to be chosen with some non-negligible probability even if they revealed
to be very bad. A better approach is to use an exploration based on an Upper-
Confidence Bound (UCB), which is optimal (in terms of regret) in multi-armed
bandits [1].

In every state and for each action, we define the following bonus b(s, a) as

2In7(s)

b(s7a) = T(S a) ,

where 7(s) is the number of times s has been visited so far and 7(s,a) is the
number of times action a has been tried in state s. Note that the bonus is
higher for less-tried actions. A UCB-based exploration strategy chooses actions
in a state s with arg max, [Q(s,a) + b(s, a)]. This strategy automatically finds a
good balance between exploration (i.e., high bonus) and exploitation (i.e., high
Q value).

3.3 Deep Q-Learning Algorithm

When the number of Bayesian network variables becomes large, the number of
states grows exponentially, which prevents the direct application of Q-learning.
For large or continuous state-space, a function approximation scheme is needed
to approximate the Q function. In this paper, we use the deep Q-network (DQN)
algorithm [17] for its proven efficiency and performance. DQN learns Q(s, a;0),
an approximation of the Q values, with 6 representing the parameter of the
neural network, by minimizing the following loss function:

L(0) = Es,a,T,S’[@ - Q(s, a5 6‘))2]7 (8)

where § = r + ymax, Q(s’,a’;07), and 6~ represents the independent target
network’s parameters that is a copy of 8, which is updated at a lower frequency.

In addition, experience replay is adopted to improve the stability of the DQN
training. It consists in (1) storing in a replay buffer the transitions (s,a,r,s’)
experienced by the agent during its interactions with the environment, then (2)
minimizing the previous loss function on mini-batches uniformly sampled from
the buffer.

Besides, both DQN and Q-learning are known to overestimate the Q values,
as the max operator uses the same values to both select and evaluate an action.
Correspondingly, the Deep Double Q-network (DDQN) [11] is proposed to solve
this problem by redefining the target g with:

§=r+7Q(s argmax Q(s',a';0);:67), )
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Algorithm 1: DDQN Algorithm with UCB

Input: empty replay buffer B, initial network parameters 6, 6~ -copy of 6,
replay buffer maximum size N,, training batch size N}, target network
replacement frequency N~

Output: the parameters of Q-network

for episode e € 1,2,...,M do

1
2 Initialize node sequence x «— ();
3 fort €0,1,... do
4 Set state s « x, take action a with arg max, [Q(s,a) + b(s,a)];
5 Sample next node z‘ from environment given (s,a) and receive reward
r, and append z' to x;
6 if |x| > N, then
7 L delete oldest node xz¢,,,;, from x;
8 Set s’ + x, and add transition tuple (s,a,r,s’) to B, replacing the
oldest tuple if |B| > N,;
9 Sample a minibatch of Nj tuples (s, a,r,s’) ~ Uniform(B);
10 Construct target values, one for each of the N, tuples;
11 if s’ is terminal then
12 L yi; = 7; break;
13 else
14 L yi =1 +vQ(s’,argmax, Q(s',a’;0;);07);
15 Do a gradient descent step with loss |ly; — Q(s, a; 0)||*;
16 Replace target parameters 6~ « 6 every N~ steps;

while the other parts are identical to DQN. For simplicity, we base our work
on DDQN. It would be straightforward to use instead other variants of DQN,
such as prioritized experience replay [20], dueling network [27], or bootstrapped
DQN [18].

We illustrate the DDQN algorithm with UCB in Algorithm 1. The whole
process of BNSL in our framework RBNets is summarized in Algorithm 2.

4 Experimental Validation

In this section, we present extensive experiment results over the performance of
our method, against state-of-the-art methods.

4.1 Experiment Setup

The experiments were performed on a PC with 2.10 GHz Intel Xeon E5-2620
processor, 64 GB of RAM, 1024 GB of hard disk space, and running Ubuntu
16.04. About parameter setting, the reward discount factor v = 1 and the max-
imum episodes M = 300. We used RMSProp for learning parameters with the
learning rate o of 0.001. We used a replay buffer size N, of 2000, batch size N,
of 200, and target network replacement frequency N~ of 300.
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Algorithm 2: RBNets Algorithm

Input: Dataset D = {D1, D2, ..., Din } and variables V = { X1, Xa, ..., Xn}
Output: The Bayesian network structure G*

1 Extract POPS P; for each variable X; based on Theorem 1, Theorem 2 and
Theorem 3;

2 Build a search graph and calculate the value of each edge using Equation (6);

3 Find a good ordering of variables using Algorithm 1;

4 Obtain the parent sets I1; of each variable X; according to POPS given the
ordering of variables;

5 Rebuild the network structure by the parent sets.

Table 1. The description of datasets sorted according to the number n of variables
and the number m of instances. An asterisk indicates that the dataset is from BNR
and we generate instances from it, otherwise it is from UCI.

Small Medium Large Very large Very Large and Massive
Dataset |n |m Dataset n |m Dataset n \m Dataset n |m Dataset | n m
shuttle |9 |58000 | horse colic | 27 | 368 | hailfinder* | 56 | 500 | pathfinder* | 109 | 1000 | isolet 617 | 7797
adult 14 | 48842 | water* 32500 |hepar* 7211000 | gas sensor | 128 |13910 | parkinson | 754 | 756
voting | 16]435 | alarm* 371000 | ozone 73| 2536 | semeion 256 | 1593 | androgen | 1024 | 1687
segment | 19 | 2310 | sponge 45|76 insurance |86 | 9000 | madelon 500 | 4400 | wikipedia | 1068 | 731

4.2 Datasets

The datasets are from UCI repository! and Bayesian Network Repository
(BNR)?. We removed the lines with missing data and discretized continuous
variables into two states using the mean values. The BNR classifies networks
as small (less than 20 variables), medium (20-50 variables), large (50-100 vari-
ables), very large (100-1000 variables), and massive (more than 1000 variables).
The description is depicted in Table 1.

4.3 Baseline Methods

Many existing techniques in heuristic search and exact solver can be used to han-
dle the problem of Bayesian network structure learning. We compare our method
with the following two exact methods (A* and GOBNILP), three heuristic meth-
ods (GHC, OBS, and ASOBS), and one reinforcement learning based method
(RL-BIC).

— A* [28] is developed based on the dynamic programming recurrences to learn
optimal network structures. It formulates learning optimal Bayesian network
as a shortest path finding problem. With the guidance of a consistent heuris-
tic, the algorithm learns an optimal Bayesian network. We use the version
2017 from URLearning?.

! http://archive.ics.uci.edu/ml/.
2 https://www.bnlearn.com/bnrepository/.
3 http://www.urlearning.org/.
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Table 2. The running time (in seconds) of different methods. Note that the extraction
of POPS was computed in a preprocessing step and the running time does not include
it. We use the same extracted POPS in different methods. Running time of RBNets
includes model training time. Resource limits of 12 h of CPU time and 64 GB of memory
were imposed: OT = out of time; OM = out of memory. Bold indicates that the time
is the best result among all tested methods. An asterisk indicates that the dataset is
generated from BNR.

Dataset Time (s)

A* GOBNILP | GHC OBS ASOBS RL-BIC RBNets
shuttle 0.8 3.6 5.6 3.2 3.0 2.8 1.2
adult 9.6 0.9 28.4 12.8 6.4 3.6 2.3
voting 4.4 3.1 19.2 18.6 12.5 8.3 2.6
segment 2.8 4.0 26.7 10.2 5.8 6.1 3.5
horse colic 8.5 11.8 121.6 64.0 42.3 29.6 12.4
water* 6.2 4.7 239.4 43.9 26.6 25.7 15.8
alarm* 70.1 6.9 1385.1 482.3 320.7 105.4 80.5
sponge 138.4 20.6 oT 215.6 68.5 29.8 19.7
hailfinder* OM 129.3 oT 673.3 104.3 105.6 71.1
hepar* OM oT oT 1204.7 382.4 309.1 209.2
ozone oM oT oT 3420.0 715.7 769.2 526.4
insurance oM oT oT 3257.8 2802.5 2035.7 1953.0
pathfinder* oM OM oT 3070.6 1961.0 1544.9 1194.1
gas sensor OM OM oT 3641.2 3409.4 3284.8 3026.5
semeion OM OM oT 18530.6 13298.5 12037.0 10573.2
madelon OM OM oT 30268.9 22746.6 22453.7 19281.7
isolet OM OM oT 38211.4 29682.3 28444.8 26318.6
parkinson oM OM oT oT 31842.1 28373.5 27805.9
androgen oM OM oT oT 39467.4 37009.2 36256.0
wikipedia OM OM oT oT 40369.2 38675.1 38096.8

— GOBNILP (7] is based on the integer programming (IP) for exact BN learn-
ing, which learns Bayesian networks from complete discrete data or from local
scores. It adds acyclicity constraints to the ILP during solving in the form of
cutting planes. We use the version 1.6.1 with SCIP 3.2.1 of GOBNILP*.

— Greedy Hill Climbing (GHC) [9] examines all possible local changes (edge
addition, edge deletion, and edge reversal) in each step and apply the one
that leads to the biggest improvement in score and optimizes the network
structure. We use the implementation of bnlearn® package with version 4.5.

— OBS [25] makes use of the topological orderings of variables as a search space,
selecting for each ordering the best network consistent with it. This search
space is much smaller, makes more global search steps, has a lower branching
factor, and avoids costly acyclicity checks.

* https://www.cs.york.ac.uk/aig/sw/gobnilp/.
5 https://www.bnlearn.com/.
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— ASOBS [19] performs approximated structure learning without constraints
on the in-degree. It is made of two parts: parent set identification for explor-
ing the space of possible parent sets of a node; structure optimization for
maximizing the score of the resulting structure.

— RL-BIC [29] proposes an encoder-decoder model, which takes observable
data as input and generates graph adjacency matrices that are used to com-
pute rewards. The reward incorporates both the predefined score function
and two penalty terms for enforcing acyclicity.

4.4 Evaluation Metrics

The explicit goal of Bayesian network structure learning is to maximize the BIC
score. Therefore, in addition to the running time, we evaluate the performance
of methods by the BIC score. The difference in BIC scores between the two
alternative networks is an asymptotic approximation of the logarithm of the
Bayesian factor, which is the ratio of two posterior probabilities [19]. ABICy 3 =
BIC; — BICs represents the difference between the BIC scores of network net;
and network nety. If ABIC; 2 > 0, it means that net; is better than nets.
In order to quantify this metric, the evidence in favor of net; is respectively
{neutral, positive, strongly positive, very strong} if ABIC 5 is between {0 and
2; 2 and 6; 6 and 10; beyond 10} [19]. In the same way, the evidence in favor
of mety is respectively {neutral, negative, strongly negative, very negative} if
ABIC 5 is between {—2 and 0; —6 and —2; —10 and —6; smaller than —10}.

Table 3. The comparison of RBNets with four heuristic baselines in unknown network
structures.

RBNets vs GHC | OBS | ASOBS | RL-BIC
ABIC(K)
Very positive (K > 10) 24 21 |15 12

Strongly positive (6 < K < 10)
Positive (2 < K < 6)

Neutral (-2 < K < 2)

Negative (—6 < K < —2)

Strongly negative (—10 < K < —6)
Very negative (K < —10)
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4.5 Performance Evaluation of Time

We first tested the running time of different methods in solving the benchmark
datasets. We terminate a method early if it runs for more than 12h on a dataset,
which means out of time in our scenario. The result is presented in Table 2, from
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Table 4. The comparison of RBNets with four heuristic baselines in known network
structures.

RBNets vs GHC | OBS | ASOBS | RL-BIC
ABIC(K)
Very positive (K > 10) 29 23 |19 14

Strongly positive (6 < K < 10)
Positive (2 < K < 6)

Neutral (-2 < K < 2)

Negative (—6 < K < —2)

Strongly negative (—10 < K < —6)
Very negative (K < —10)
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which we can draw that the running time mainly depends on the scale of the
datasets, including the number of variables and instances. The conclusions are
as follows.

— Small networks and medium networks datasets are easy for exact algorithms,
A* and GOBNILP, while heuristic methods including GHC, OBS, ASOBS,
and RL-BIC need more time to find a solution. However, our proposed
RBNets achieves satisfactory results and are even better than exact meth-
ods in voting and sponge datasets.

— In large networks, it can be challenging for both A* and GOBNILP, either out
of memory or out of time. As for the heuristic methods, GHC does not work
when number of variables is larger than 40, which is understandable because
it examines all possible local changes in each step. ASOBS performs better
than OBS because it extends the ordering-based algorithm and provides an
effective approach for model selection with reduced computational cost. RL-
BIC achieves good performance among baseline methods. Our RBNets has
the best performance compared with all baselines.

— In very large and massive networks, A*, GOBNILP, and GHC fail to complete
the finding process due to out of memory or out of time. OBS, ASOBS, and
RL-BIC can be applied to very large networks, but is still slower than RBNets.

— A* method can easily exceed the memory limit in large datasets, the reason
is that it requires all the search information, such as parent and order graphs,
to be stored in memory during the search process.

To sum up, the improvement of RBNets is significant in running time when
compared with baselines, especially in large, very large, and massive networks.

4.6 Learning Performance from Datasets

In addition to running time, we measure the quality of networks that are learned
from datasets of different methods. Based on the datasets mentioned in Table 1,
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there are 15 datasets from UCI with unknown network structures and 5 datasets
from BNR with known network structures. For the former, we randomly divide
each dataset into two subsets of instances, which forms 30 datasets with unknown
network structures. For the latter, we generated instances from these networks
using logic sampling. Each instance corresponds to a value assignment for all
nodes. Then we run each method when given the first 200, 500, 1000, 2000,
3000, and 5000 instances from each dataset, i.e., overall we consider 30 datasets
(5 original datasets multiplied by 6 different number of instances) with known
network structures.

Then we compare our RBNets with four heuristic methods GHC, OBS,
ASOBS, and RL-BIC respectively. It should be noted that exact methods A*
and GOBNILP are not appropriate here since they aim to learn the optimal
Bayesian networks. Besides, A* and GOBNILP can not work in very large net-
works unless the in-degree is restricted. A positive ABIC means that RBNets
yields a network with higher BIC score than the network obtained using other
approaches; vice versa for negative values of ABIC. The comparison results are
shown in Table 3 and Table4, from which we draw following conclusions.

— The ABIC of the learned network is larger than 10 in most cases, implying
very effective calculation for the networks learned by RBNets.

— Especially comparing with GHC and OBS, RBNets acts much better than
them whether the network structure is known or not. ABIC > 10 is obtained
in 24/30 cases and 29/30 cases in unknown and known structures, respectively.

— ASOBS and RL-BIC have good performance in a few datasets, e.g., ASOBS
leads to ABIC < —2 in 1/30 cases in unknown structures and 4/30 cases
in known structures. However, they still perform worse than RBNets in most
cases.

— RL-BIC yields ABIC < —2 in 1/30 cases and 4/30 cases in different data
scenarios. However, RBNets performs better than R-RBNets in most cases.

5 Conclusion

In this paper, we discuss the problem of learning Bayesian network structures
from a given dataset and scoring function, which has been shown to be NP-
hard. The running time and learning performance of traditional methods are
not satisfactory, which calls for further research. In this paper, we propose a
novel deep Reinforcement learning based Bayesian Network structure learning
approach (RBNets). We formulate this problem as a highest-value path prob-
lem and calculate the ordering of variables using the Deep Double Q-network
algorithm with Upper Confidence Bound based exploration strategy. Then we
can reconstruct the structure of Bayesian networks from the potential optimal
parent sets and the ordering of variables. Substantial experiments on real and
synthetic datasets show the efficiency and effectiveness of our method against
baseline methods. RBNets has better performance over running time and BIC
score when compared with state-of-the-art methods, especially in large networks.
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